
SMSQzine
Issue #7 July 2019

Special C68 Edition

smsqzine

Published by:
Timothy Swenson
swenson_t@sbcglobal.net
swensont@lanset.com

SMSQzine is published as a
service to the Sinclair QL
community. Writers are invited
to submit articles for publication.
Readers are invited to submit
article ideas.

Created using Open
Source Tools:

 OpenOffice
 Scribus
 Gimp
 SMSQmulator

Copyright 2019
Timothy Swenson

Creative Commons License
 Attribution
 NonCommercial
 ShareAlike

You are free:

 To copy, distribute,
display, and perform
the work.

 To make derivitive
works.

 To redistribute the
work.

table of contents

Editorial 1

Curses and the QL 1

C68 with QL Graphics 3

C68 Documentation 4

Programming the Pointer
Environment with C68 5

XTC68 5

A New Make 7

Xmenu with C68 7

C68 with Qmenu 9

Editorial

I have been using C68 for a number of years, but this
is the first time I've tried using it for Pointer
Environment programs. Once I started tinkering with
C68, this lead me on a path looking at a number of
C68 topics. The articles are mostly in an order that I
took, first with QL graphics with C68, then looking
into the QPTR example programs, and then doing
some of my own Pointer Environment programs, etc.

There is a lot that comes with C68. There are quite a
number of libraries available to the C68 programmer
to use. There a few front ends for C68 that I have
only looked at. I'm find that I'm back to QED for my
editor of choice, but MicroEmacs has some
advantages if doing some serious C68 work. It has a
C highlight mode that will highlight the C syntax. It
is partially mouse driven. It has a whole macro
language is you need to do some serious work on C
code.

Considering that I'm not all that ANSIfied my self,
I've not explored how ANSI C68 is and what it takes
to port code from the rest of the world the C68. I do
know that it is more of an ANSI compiler than a
K&R compiler.

Hopefully the articles are interesting and maybe that
will encourage some of you to try working with C68.

Curses and the QL

Curses is a Unix programming library that is
designed to make writing screenbased programs
easy on textbased interfaces. It is designed to take
the terminal information, such as the terminal type,
its size, etc, and allow for standard commands to use
the terminal. Programs that use curses the 'top'
command and games like Rouge.

Curses was create by Ken Arnold and was written for
BSD Unix. A version was created by Mark Horton at
AT&T. In 1993, ncurses (new curses) was released.
Sometime in the 1990's, curses was ported to the QL.
In reviewing the source code, I don't see any mention

of who did the port. From the source code, the AT&T
version was used in the port.

Curses on the QL is used with the C68 C compiler
and the library comes with the distribution disk. The
C68 source code disks also have the curses source
code.

Curses lets you do screen commands, like CLS and
AT. Most Unix/Linux programs just treat the screen
as an infinite roll of paper and old text just scrolls up
the page as new text appears at the bottom. Very
much like using an old ASR33 teletype machine.
Curses changes the output to be more like a true
screen, where text can be placed at any location.

Here is a sample bit of curses code:

initscr();
addstr("Enter a Character (then

hit enter) ");
refresh();
getchar(x);
move(10,10);
addchr(x);
refresh();

This will prompt a user to enter a character, move the
cursor to a postion of 10,10, and then print the
character to the screen. The refresh() command
updates the screen. Sort of like doing a PAUSE on
the ZX81 when in FAST mode. The screen is
updated in the background and then the refresh() call
displays it.

The test program I wrote for curses was to move the
X character from left to right on the screen, making
sure to wipe out the old character before printing the
new one. The core part of the program is:

initscr();

for (i = 1; i <= 10; i++)
for (x = 10; x <= 40; x++)

move(15,x);
addch('X');
refresh();

Page 1

for (a = 1; a <=
1000000; a++)

move(15,x);
addch(' ');
refresh();

The initscr() function creates a new default
window. All of the commands following use
the default window. There are ways to open
multiple windows and address each
command to a specific window.

One thing to note about the move command, it takes
the Y argument first, where as in most functions that
use the screen, use the X argument first. It just takes
a bit of getting use to.

The long loop in the middle of the program is a delay.
Without it the program would run too fast for you to
see the movement.

Here is another example that shows some more
curses commands:

wnd = initscr();
getmaxyx(wnd,r,c);
addstr(" Size of Window ");
printw("Width is : %d ",c);
printw("Height is : %d ",r);

move(15,10);
addch('X');
attrset(A_UNDERLINE);
addch('U');
attrset(A_BLINK);
addch('X');
attrset(A_BOLD);
addch('B');
attrset(A_REVERSE);
addch('R');
refresh();

Note that how the initscr() function is used to assign
a value to a variable. The getmaxyx needs to know
the pointer to the window, so I had to get the pointer.
The addstr() prints a string, but only a string. If there

is a need to print a variable, then the printw()
command is needed. It is very similar to the standard
printf() command.

The last bit of the program is to test the different text
attributes. I found that underline worked as did
reverse. Blink did nothing and bold had the same
output as reverse.

Here is another program based on the first one:

initscr();
noecho();
cbreak();
curs_set(0);

while (var == 1)

move(y1,x1);
addch('X');
refresh();

c = getch();
if (c == 'j') y2 = y1+1;
if (c == 'k') y2 = y11;
if (c == 'l') x2 = x1+1;
if (c == 'h') x2 = x11;
if (c == 'a') var = 0;

for (a = 1; a <= 500000; a++)

move(y1,x1);
addch(' ');
refresh();

Page 2

x1 = x2;
y1 = y2;

This program looks for input from the user (either the
H, J, K, or L keys) and moves the X on the screen.
For those familiar with Unix, these are the standard
keys for moving left, down, up and right. The X is
printed to the screen and as keys are hit, the X is
moved around the screen. To exit, the A key is hit.

The cbreak() command tell curses to not wait for a
return character before getting the input. It functions
more like INKEY$ than INPUT. The noecho()
command tell curses to not echo the key hit to the
screen. The curs_set() command is supposed to make
the cursor invisible, but it does not appear to be
working.

Finding good documentation on curses is not easy. I
have a copy of "Programming with Curses" by John
Strang, a book from O'Reilly & Associates. It is a
good introduction to curses, but there is a whole lot
of other commands that are left out. If you want a
good introduction this book does a pretty good job.

If found the best documentation to be the documents
on ncurses. There is probably a difference between
ncurses and the version ported to the QL, but ncurses
is close enough.

The document can be found at:
https://invisible
island.net/ncurses/man/ncurses.3x.html

Look for the section "Routine Name Index" and there
you will find links to the individual man pages for the
commands.

To know what curses commands are available on the
QL, I have gone through the sources and created a list
of each command. This list is included in the .zip file
that goes with this issue. There are close to 270
commands in the QL version. Most of these can be
found in the ncurses documentation. Some
commands may not be exactly the same spelling as

the ncurses version, but the names are close enough.

The curses.h file in the C68 distribution is helpful to
look at, as it shows a number of the attributes that are
used with curses. This is how I found A_BOLD and
A_REVERSE. It also does list information about the
commands, but in a slightly less readable format.

When using a curses program, you must set up the
QL environment for it. You have to have the
Environment Variables extension loaded (ENV_BIN).
Then there are two ENV commands to set up. The
location of the terminal information has to be
defined:

SETENV "TERMINFO="win1_C68_LIB"

And what the terminal will be:

SETENV "TERM=qdos"

So the terminfo_qdos file will be loaded.

If it is not clear, the need for having curses on the QL
is the ability to port cursesbased program from
Unix/Linux to the QL. There are a few older Unix
games that are cursesbased that could be ported to
the QL. The game Rogue has been ported by Jerome
Grimbert, later updated by Thierry Godefroy. Elvis,
the clone of the vi test editor, ported by Dave Walker,
also uses curses.

I have used curses to write a ASCII implementation
of my cellular automata program. I am finding that
there is a '0' that appears on the screen with no
associated command to put it there, so there could be
some bugs in the curses library.

C68 with QL Graphics

I have been porting my Cellular Automata program to
as many lanuages as I can on the QL (plus ZX81, T/S
2068 and Spectrum). When using other C compilers
on the QL (SmallC, DP C & QC) the QL graphics

Page 3

commands are treated just like any other C function
calls, using the same file pointer. When I started
writing the program for C68, it was clear that C68
was different and it was not obvious how to mix
standard C input and output functions with QL
graphics.

There is some discussion in the C68 documentation
about the three different I/O levels in C68 and how
the QL native layer is not the same as the C layer. I
had posted a query on the Sinclair QL Forum and got
some answers and then I sort of sat on the issue for a

while. I looked at the code for CBzone to see how
that program did it and got a few ideas.

I was trying to open my own window and then using
that window for both levels of I/O (C and QL). I
thought I had something working but it only sort of
looked like it was working. I was trying to use the
initial console, thinking that an window open call for
"CON_" was referring to the default console, when in
fact I was opening a new console. Luckily, Tobias on
the QL Forum mentioned that the device for the
default console as 'stdout'. Once I knew that I could
then convert the C file pointer for 'stdout' to a QL
channel id.

When writing to the screen with a C function, since it
is the default console, I don't need to refer to a file
pointer. The command printf is used instead of
fprintf, which needs a file pointer. When I wanted to
use QL graphics, then I used the channel id that I got
from 'stdout'.

In my code, I use _condetails to set up the default
console window to be the size that I want. I then use
fgetchid(sdtout) to get the channel id of the console
window. My test program will be included in the .zip
file for this issue.

Once I had this working, I was able to get the
Cellular Automata program running with C68, which
means I could check off another language / compiler
on my list.

C68 Documentation

I like documents, and I like it when they look good.
Printing a document from Quill to a dotmatrix
printer does not cut it for me. With a number of QL
documents, I have converted them to Open Office
and made them look better. I have done this with the
C68 documents. I had done this previously, but there
was some documents that I had not added.

The end result is two documents, one on C68 and one
on the C68 libraries. I've included 10 of the libraries
available for C68. The libraries:

LibANSI, LibC68, LibQDOS, LibSMS, LibQPTR,
LibM (math library), LibUnix, LibCurses, LibVT
(terminal emulation) and LibDebug.

Since I like hard copy, I will print both of these
documents out, but I will make them available as
PDF files. I did some C68 programming while
traveling. I did not bring the hardcopy along, but had
the PDF files on my netbook. Using SMSQmulator, I
could switch between programming and checking the

Page 4

C68 documentation. It worked rather well.

The documentation is available at
http://swensont.epizy.com/.

Programming the Pointer
Environment with C68

I've been thinking about programming with the
Pointer Environment for almost 20 years. I've
decided to take a small dip in the pool and see how
hard it would be to do it using C68.

The QPTR distribution for C68 comes with a number
of example programs, that start with a simple window
and progress to more advanced programs, adding
features as the examples move along. The examples
come with documentation written by Tony Tebby and
go over the important details of each of the examples.
I found the document hard to follow without looking
at what each example looked like. To solve this
issue, I compiled all of the examples to see what they
look like and to added them to the tutorial document.
This document will be made available.

When I had started looking into the Pointer
Environment years ago, I started working on a
document that was an introductory text on the
individual parts of the Pointer Environment (Loose
Item, SubWindow, etc) to try and understand what
they are and how they work together. I never
finished that document and never really got a grasp of
the different parts of the Pointer Environment.

As I was looking through the examples, I thought it

would be faster to use the examples as a template for
a pointer environment program. Find one of the
examples that comes closest to what you need, and
then modify it to fit your needs. The size of the
window can easily be changed in the code. If there is
a Loose Item that you don't need, then remove it.

Now, this might not work of you are working on a
fairly complex program, but if you are just working
on something fairly simple, then starting with one of
the examples can save a lot of time trying to start
from scratch.

As a test I copied the wind_2c_c example and copied
it to test1_c. I then moved the eg_h file from the
distribution disk and put it in win1_c68_INCLUDE
to go with all the other _h files. I also put all _o files
into win1_c68_LIB directory.

I edited test1_c to reflect the new name. I also
changed the Window Title to be what I wanted. The
wind_2c_c example displays a number of lines to the
window and the waits for either a MOVE or ESC
action. I altered the program to just print out two
sample lines of text, just to show that it behaves
different than the example.

I compiled it with:

exec cc;"o win2_test1_exe
win2_test1_c win1_c68_LIB_litem_o"

With environment variables it is possible to set the
working directory for the files.

This program worked and I did little more than edit a
few lines in the PE code to reflect the size or color of
the window. I did a second example where I used
what I had learned about QL graphics with C68 and
added a block command to put a block on the screen,
along with some text.

XTC68

XTC68 is a version of C68 ported to other computers,
such as Linux or Windows. The early version was

Page 5

also ported to DOS and NT, but the most recent
version had not touched those OS's.

The advantage of XTC68 is the ability to do all of the
development work and compiling on a different
operation system, one with possibly better coding
tools that QDOS or SMSQ/E and to compile the
program on a faster platform.

Back in the 90's when most people has BBQL's,
doing the coding and compiling on another computer
was much faster. The BBQL was a slower system,
most used floppies which had limited space, etc.
Putting everything on a MSDOS, Windows or Linux
computer with a faster processor, larger hard drive,
etc. made for faster development.

The current version of XTC68 has recently been
touched, so it is more or less actively maintained.
This version is hosted on GitHub and to get a copy
you will need to have Git installed on your computer.
I'm using Linux, so I will be providing instructions
on how to get it up and running on Linux.

The first thing is to get the source:

% git clone
https://github.com/stronnag/xtc68

This will download the source and put it into a
directory called xtc68.

% cd xtc68
% make

Once in the source code directory, run the make
command. One thing to note, XTC68 is a 32bit
application and the compiler will compile it as a 32
bit application. If you are running on a 64bit version
of Linux, you will need to install the 32bit libraries.

XTC68 needs the first disk of the C68 distribution to
have the header and include files. This is
424frun1.zip (found on Dilwyn's website).
Download that zip file, put it in the support directory
and extract all of the files.

The last step is to run the installation script (from
within the main xtc68 directory):

% ./install.sh

Now you are ready to compile programs for the QL.
I found a simple "Hello world" program online,
dumped it to the xtc68 directory, and them made sure
it would work under C68. I executed XTC68 just
like C68, except that compiler is called "qcc" instead
of "cc". This also differentiates it from the "cc" GCC
compiler on my Linux system.

% qcc o hello.exe hello.c

Note that there is no need to use the underscore as the
extension seperator but the standard dot will do.

Within a few seconds the compiler finshed and there
was hello.exe on disk.

The next step is getting the binary to the QL and
putting the dataspace into the header part of the
executable. This is done with a version of InfoZip
modified for the QL, but compiled for Linux. The
version on Dilwyn's site will not run and I had to get
an undated version from Graham. This will be
included on the zip file for this issue.

% qlzip Q2 hello.zip hello.exe
hello.c

This will create the hello.zip file the source and
executable files. It will also add the dataspace to the
executable file.

On the QL, I used the normal unzip to extract the
files. The QL version of unzip will convert the . to a
_, so that hello.exe will become hello_exe. Once on
the QL, I was able to execute hello_exe and it ran just
fine. As a test I took the same source code and
compiled it with C68 and basically got the same
executable.

With the advent of faster systems and faster

Page 6

emulators, the speed issue may no longer be a factor.
The issue now might be one of programming tool
familiarization and what one prefers. When I write
for the QL, I use the QL with QED as my editor.
Granted it is not mouse driven and I'm used to a
mouse driven editor, I just adjust. Someone else
might find that they cannot live without the real
Emacs and want to develop using that editor.

There are a number of IDE's for Linux that should be
able to be modified to use XTC68. Just change the
call to 'cc' to 'qcc'.

A New Make

When I was looking at the C68 QPTR example
programs, I was going to use Make to compile them.
The examples did come with a Makefile to make it
easy to compile the whole set. When I ran make, it
brought up a console window and then nothing. It
took me a few seconds to realize that SMSQmulator
emulation had locked up. I could use the
SMSQmulator toolbar options, but the emulation was
locked up. I reset the emulator and tried again. I got
the same results.

I knew that make had worked in the past, so I found
another .win file and found an older version of make.
This version, 2.0d, ran fine. The version that came
with C68 4.24f, 2.0f, was not fine.

I contacted Wolfgang to let him know about the issue
and see if he could shed any light on make. He found
that it also crashed QPCII. He said the program
"writes to memory starting at address 0, so it
overwrites the 'ROM' no wonder nothing will work
anymore." He found that two subroutines did this.

Since C68 comes with a source distribution, I decided
to see if I could recompile make and see if that
worked. I extracted the source zip file and put it on
my local disk. I thought I would try to compile it
with XTC68. The compile went fine, I zipped it with
qlzip, but once I got it to SMSQmulator, it would not
run. I tried setting the data space with a tool, but also
did not work.

I created a new .win file, dumped the make source
code on it and tried to compile it by hand. That did
not go so well. I'm not sure I put the source files in
the right order.

Since I had a working make, let's see if make can
make make. I copied the version 2.0d binary over to
my C68 disk and ran make on the make Makefile.
There were a few warnings, but within a minute I had
a new make 2.0f binary. When I ran it, it ran fine.
EXEC make;"h" gave the help screen.

I'm not sure what caused the original version of 2.0f
to be bad. I even want back and pulled a fresh copy
from the C68 distribution zip files and it still crashed
SMSQmulator.

This new version of make will be included in the zip
file for this issue.

Xmenu with C68

Xmenu was written by Jerome Grimbert. It is a form
of Qmenu for C68, written entirely in C. The main
functions are popup windows for making a selection,
enter a string, or selecting a file. Xmenu is
comprised of two header files and a binary library
file, libxmenu_a. To use Xmenu, the two include
files are copied to the normal C68 include directory.
The libxmenu_a is copied to the normal C68 library
directory. When using C68, the library is used by
adding "lxmenu" at the end of the call to cc.

The documentation for Xmenu is limited and is only
the two include files. The function calls are detailed,
but there is no example code showing what sort of
values the calls can have.

The functions are:

Item_Select()
List_Select()
Radio_Select()
Message_Report()
String_Edit()

Page 7

XDialog()
Menu_Button_Text()
Menu_Button_Logo()
......

There are comments about each of the functions
listed in xmenu_h that details the arguments that it
needs. Each function needs a structure that contains
a number of colors for the popup window. The

structure, ColourSet, is defined in xmenudef_h and
has 14 items. Without any documentation I guessed
that each of the items is a color value and made some
guesses at what values are needed.

I did a quick test using the previous test1_c from
tinkering with the Pointer Environment. I added the
two include files and then added a structure based on
colourSet. Since colourSet is created with a typdef,
there is no need to start the definition like this:

structure colourSet mycolor =

But just use colourSet as it aleady been defined a
structure:

colourSet mycolor

For my test, I wanted to get some string input. I used
String_Edit.

x =
String_Edit(&mycolor,"Title","Enter
String","",15,*str);

The second string is the title of the popup. The
second string is the explanation for what is being

inputted. The third string is the default value. For
my needs, I left it as blank. The next arguement is
the length of the input string. The final value is the
variable for the string.

After compiling, the program ran fine and I got the
two popups that I was expecting.

The next thing I tried was Item_Select where one
item is selected from a list of items. The code is like
this:

x =
Item_Select(&mycolor,"Title","Select
Item",3,"One","Two","Three");

The popup will create a list of three items that are
mouse selectable. The return value is which one the
user selected. In the above case "One" would return
1 as it is the first item in the list.

After compiling, I ran through the program, but when
Item_Select was supposed to come up, the top half of
the screen went black and SMSQmulator emulation
just halted.

I next tried the Radio_Select call and got the same
behavior. To see if it was an issue with SMSQ/E or
SMSQmulator, I tested the program out on uQLx and
it also crashed. Maybe it was the compiler. I
compiled the program using XTC68. It also crashed
SMSQmulator. It was dawning on me that there is a
bug in Xmenu. There is a demo binary that is a
separate download. I downloaded it and tried it. It
worked fine and did not crash the emulator. I can
only guess that it was compiled with a slightly older

Page 8

Page 9

version of C68.

For now, I'll forgo using Xmenu until I can dig into
this some more.

C68 with Qmenu

Another way of adding pointer environment popups
to C68 programs is the library that is used to call
Qmenu from C. Qmenu is pointer environment menu
system (popups) written by Jochen Merz for both
assembly and for SuperBasic. It is loaded during
boot and any program can call it. The C68 library
allows for C programs to call Qmenu.

The C68 Qmenu library was written by Christopher
Cave and Johnathan Hudson, with some fixes by
Thierry Godefroy. It comes with the library in binary
format, two header files, a bunch of examples and a
document file.

Adding Qmenu calls to my program was fairly
simple. There is a line that increased the stack for the
progarm that is needed. The menu_h header file as
added to the program.

When looking at the calls, the documentation talked
about three of the arguments that are used on almost
any call. Looking at the examples, make it clearer
exactly they were talking about.

My first test was with ReadString, which provides a
popup for entering or editing a string:

x = ReadString("Title","Enter
String","",10,str,0,0,1)

The third empty string is just the default string. After
the str string variable, the 0,0 is an x and y coordinate
to locate the popup in the original window. Since I
said 0,0, the popup will be in the upper left corner.
The last value is the color scheme to use. The value
1 means to use the default for Qmenu.

When I compiled this, it worked the first time.

